Lattice Gauge Theories

Lattice Quantum Chromodynamics

Unlike the QED fine structure constant α, the QCD coupling parameter $\alpha_s(Q)$ depends strongly on the energy (inverse distance) scale at which the strong interaction takes place. Perturbation theory works only at high energies $Q \gg 1\text{ GeV}$. Lattice QCD is the most powerful and widely used approximation at lower energy scales, see A. Bazavov et al. Rev. Mod. Phys. 82, 1349-1417 (2010).

Left: Scale dependence of α_s Figure 9.4 PDG QCD Review. Right: Phases of QCD from USQCD

The baryon chemical potential is the Fermi energy $E_F \sim n_B^{3/2}$ where n_B is the number density.
U(1) Lattice Gauge Theory: Quantumelectrodynamics on a Lattice

Lattice QCD is a little too complicated to study in this course because it involves the Lie Group SU(3) and numerical simulations are not practical on personal computers.

The essential concepts are illustrated by lattice QED, which involves the simpler Circle U(1) Group.

Covariant Formulation of Electrodynamics

The Lagrangian density and Action for classical electrodynamics is discussed in Jackson and should be familiar from **PHY 514 Electrodynamics 2**

\[
\mathcal{L}_{\text{CED}} = -\frac{1}{4} F_{\mu \nu} F^{\mu \nu} - \frac{1}{c} J_\mu A^\mu , \quad S = \int d^4 x \, \mathcal{L}_{\text{ED}} ,
\]

where the electromagnetic field is expressed in terms of the 4-vector potential \(A^\mu = (\Phi, A) \)

\[
F_{\mu \nu} = \frac{\partial A_\nu}{\partial x^\mu} - \frac{\partial A_\mu}{\partial x^\nu} = \begin{pmatrix}
0 & E_x & E_y & E_z \\
-E_x & 0 & -B_z & B_y \\
-E_y & B_z & 0 & -B_x \\
-E_z & -B_y & B_x & 0
\end{pmatrix}
\]

and \(J_\mu(x) = (c \rho, J) \) is the electromagnetic 4-vector current density. The action is invariant under **local gauge transformations**

\[
A_\mu(x) \rightarrow A_\mu(x) - \partial_\mu \chi(x) ,
\]

where \(\chi(x) \) is an arbitrary function of space and time, provided that the electromagnetic current is conserved

\[
\partial_\mu J^\mu(x) = 0 ,
\]
which implies on integrating by parts

$$\int d^4 x \; A_\mu J^\mu \rightarrow \int d^4 x \; A_\mu J^\mu + \int d^4 x \; (\partial_\mu \chi) J^\mu$$

$$= \int d^4 x \; A_\mu J^\mu - \int d^4 x \; \chi \partial_\mu J^\mu = \int d^4 x \; A_\mu J^\mu .$$

Relativistic electrons obey the **Dirac equation**

$$[\gamma^\mu (i\partial_\mu - e A_\mu) - m] \psi(x) = 0 ,$$

where $e = -|e|$ is the electron charge, ψ is a 4-component electron wavefunction, and γ^μ are 4×4 Dirac Gamma matrices. The Dirac equation can be derived from the Lagrange density

$$\mathcal{L}_{\text{Dirac}} = \bar{\psi}(x) [\gamma^\mu (i\partial_\mu - e A_\mu) - m] \psi(x) , \quad \bar{\psi} = \psi^\dagger \gamma^0 .$$

The electromagnetic current for electrons in QED is

$$J^\mu = e \bar{\psi}(x) \gamma^\mu \psi(x) ,$$

and the Lagrange density for QED is

$$\mathcal{L}_{\text{QED}} = \bar{\psi}(x) [\gamma^\mu (i\partial_\mu - e A_\mu) - m] \psi(x) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} .$$

Photons and electrons are quanta of the $A^\mu(x)$ and $\psi(x)$ quantum fields, respectively.
Local U(1) Gauge Invariance of QED

The 4-vector field A_μ has four components, but real photons have only two independent polarization states.

The time component A_0 does not have a canonical momentum associated with it because

$$F_{00} = 0, \quad \frac{\partial L}{\partial \dot{A}_0} = 0,$$

and does not have quanta associated with it when the field is quantized.

In addition, the action is invariant under local gauge transformations

$$A_\mu(x) \rightarrow A_\mu(x) - \partial_\mu \chi(x) , \quad \psi(x) \rightarrow e^{i\chi(x)} \psi(x) ,$$

which rotate the phase of the electron field. This local gauge freedom can be used to eliminate one of the spatial components of the field A_μ from the equations of motion. In the quantum theory this gauged component corresponds to a longitudinal polarization. Real photons only have transverse polarization.

Local gauge invariance also ensures that the mass of the photon is zero and is not affected by quantum fluctuations or higher order perturbations.

In the Standard Model, the strong and weak interactions are also mediated by massless gauge fields like the photon. Gauge invariance required in order to define a consistent (renormalizable) perturbation theory in these models. It is therefore very important to preserve local gauge invariance when these theories are discretized for numerical simulation.
Path Integral Quantization and Euclidean Space

We saw that the harmonic oscillator can be quantized using Feynman’s path integral formulation of quantum mechanics. Analytically continuing the path integral to imaginary time $\tau = -i t$ gives the partition function of a classical oscillator ensemble at finite temperature $k_B T = 1/\beta = \hbar/\tau$, which can be simulated using Monte Carlo methods such as the Metropolis algorithm.

Continuing to imaginary time introduces various factors of i and minus signs relative to the conventions of perturbative QED. To simplify the Euclidean formulas and make them consistent with lattice gauge theory references, use natural units $\hbar = c = k_B = 1$ and define a positive Euclidean space metric and Euclidean Dirac matrices:

$$g_{\mu\nu} = \text{diag}(1, -1, -1, -1) \rightarrow \delta_{\mu\nu}, \quad i\gamma^\mu \partial_\mu = i\gamma_0 \frac{\partial}{\partial t} - i\gamma \cdot \nabla \rightarrow -\gamma_0 \frac{\partial}{\partial \tau} - \gamma_E \cdot \nabla = -\gamma_E^\mu \partial_\mu,$$

which defines Dirac matrices in Euclidean space

$$\gamma_E^\mu \gamma_E^\nu + \gamma_E^\nu \gamma_E^\mu = \delta^{\mu\nu}.$$

The Euclidean space action

$$S = \int d^4x \mathcal{L}_{\text{QED}} \rightarrow i \int d^4x_E \mathcal{L}_{\text{EQED}}, \quad \mathcal{L}_{\text{EQED}} = \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} [\gamma_E^\mu (\nabla_\mu - ieA_\mu) + m] \psi.$$

The subscript E is not generally used in the literature and we will drop it, keeping in mind that Euclidean Dirac matrices and solutions of the Dirac equation are not the same in Minkowski and Euclidean space.
Gauge Invariant Plaquette Action

The basic concept introduced by Wilson Phys. Rev. D 10, 2445-2459 (1974) was to discretize the action on a 4-D hypercubic lattice in Euclidean space

\[x_\mu \rightarrow an = a(n_\tau, n_x, n_y, n_z), \quad n_\mu = 0, \pm 1, \pm 2, \ldots \]

with lattice spacing \(a \). Wilson's discretization breaks translation, rotation and Lorentz symmetry, but preserves exact gauge invariance for any lattice spacing.

If \(A_\mu(n), \psi(n) \) represent the discretized photon and electron fields at lattice point \(n \) and the 4-gradient is discretized using a symmetric difference

\[\partial_\mu \psi(x) \rightarrow \frac{\psi(n + \hat{\mu}) - \psi(n - \hat{\mu})}{2a} \]

the Dirac action for the electrons is discretized

\[
\int d^4x \bar{\psi}(x) \gamma^\mu \nabla_\mu \psi(x) \rightarrow \frac{a^3}{2} \sum_n \sum_\mu \left(\bar{\psi}(n) \gamma^\mu \psi(n + \hat{\mu}) - \bar{\psi}(n + \hat{\mu}) \gamma^\mu \psi(n) \right) .
\]

This discretization couples the electron field at neighboring sites and will break local gauge invariance if the interaction term is discretized

\[
\int d^4x \bar{\psi}(x) \gamma^\mu A_\mu \psi(x) \rightarrow a^4 \sum_n \sum_\mu \bar{\psi}(n) \gamma^\mu A_\mu(n) \psi(n) .
\]
Wilson modified the representation of the photon field on the lattice to preserve gauge invariance by replacing the real variable $-\infty < A_{\mu}(x) < \infty$ with a periodic angular variable

$$\theta_{\mu}(n) = -\theta_{-\mu}(n + \hat{\mu}), \quad 0 < \theta < 2\pi$$

associated with the directed link $n \rightarrow n + \hat{\mu}$ as illustrated in the following figure:

The kinetic and interaction terms are discretized together using

$$\frac{a^3}{2} \sum_n \sum_{\mu} \left[\bar{\psi}(n) \gamma_{\mu} \psi(n + \hat{\mu}) e^{i\theta_{\mu}(n)} - \bar{\psi}(n + \hat{\mu}) \gamma_{\mu} \psi(n) e^{-i\theta_{\mu}(n)} \right].$$

This action will be invariant local phase rotation of the electron field if the angular variable transforms simultaneously as follows:

$$\psi(n) \rightarrow e^{ie\chi(n)} \psi(n), \quad \bar{\psi}(n) \rightarrow e^{-ie\chi(n)} \bar{\psi}(n), \quad \theta_{\mu}(n) \rightarrow \theta_{\mu}(n) - e[\chi(n + \hat{\mu}) - \chi(n)].$$
To discretize the locally gauge invariant field strength tensor $F_{\mu\nu}(x)$ Wilson defined the quantity

$$f_{\mu\nu}(n) = \theta_{\mu}(n) + \theta_{\nu}(n + \hat{\mu}) + \theta_{-\mu}(n + \hat{\mu} + \hat{\nu}) + \theta_{-\nu}(n + \hat{\nu})$$

$$= \theta_{\mu}(n) + \theta_{\nu}(n + \hat{\mu}) - \theta_{\mu}(n + \hat{\nu}) - \theta_{\nu}(n)$$

associated with the elementary oriented plaquette (unit square) formed by the closed loop of links $n \rightarrow n + \hat{\mu} \rightarrow n + \hat{\mu} + \hat{\nu} \rightarrow n + \hat{\nu} \rightarrow n$.

The action for the photon field is discretized using

$$\frac{1}{4} \int d^4 x \, F_{\mu\nu} F^{\mu\nu} \rightarrow \sum_{n\mu\nu} \left[1 - \cos f_{\mu\nu}(n) \right].$$

The mass term is locally gauge invariant with the simple discretization

$$\int d^4 x \bar{\psi}(x) m\psi(x) \rightarrow m a^4 \sum_n \bar{\psi}(n) \psi(n).$$

In the continuum limit $a \rightarrow 0$ the discretized action is recovered by scaling the lattice gauge fields

$$\theta_{\mu}(n) = a A_{\mu}(x), \quad f_{\mu\nu}(n) = a^2 F_{\mu\nu}(x).$$